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MAXONINE: STRUCTURE CORRECTION AND SYNTHESIS

T. Ross Kelly*, Wei Xu and Jayashree Sundaresan

Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02167

Abstract: The structure for the pentacyclic alkaloid maxonine is revised from 1 to 17. Compound 17 was
prepared by total synthesis and shown identical to the natural product.

In 1989 Delle Monache et al. reported! the isolation and structural characterization of an alkaloid that had
been obtained from the roots of a plant (Simira maxonii) endemic to the Costa Rican tropical forest. They
named the alkaloid maxonine and assigned it structure 1. Our interest in the synthesis of heterocyclic natural
products? combined with a desire to verify the structure assignment led us to undertake the synthesis of 1.

Harmane3 (2) was elaborated (Equation 1) to aldehyde § by conversion to its benzal derivative 3,4
protection and ozonolysis. The E-ring unit 10 was prepared as outlined in Equation 2. OurS previously
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developed application of the Comins method® to the regiospecific lithiation of nicotinaldehyde (6) gave bromide
8 via 7. Reaction of 8 with methylmagnesium bromide followed by methylation generated 10.
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Compounds § and 10 were linked (Equation 3) by lithium/halogen exchange of 10 with #-BuLi (to give
11) followed by addition of § to 11 to provide 12. Oxidation of 12 was accompanied by cleavage of the para-
methoxybenzyl group, giving 13.

0 1. n-BuLi
=N 2.5

10, X=Br
11, X=Li

Ether 13 was then exposed to a solution of 48% HBr in acetic acid at reflux. It had been our
expectation that 13 would be converted to 14 (or a protonated form thercof) and that 14 would undergo
intramolecular N-alkylation to furnish 15. Deprotonation of 15 would then (note arrows in 15) provide 1.
Since Dr. Delle Monache had generously supplied a sample of authentic maxonine, it was easy to monitor the
outcome of reactions intended to convert 13 to maxonine. But numerous attempts to achieve the conversion of
13 to 1 failed to give even a trace of maxonine; diketone 16 was frequently obtained as a reaction product.

spectroscopy. Structure 1 is in good agreement with the NMR data reported by Delle Monache et al. But
reconsideration of that data suggested that structure 17 is also in accord with the data reported for maxonine.
Moreover 17, like 1, is consistent with standard pathways of monoterpenoid indole alkaloid biosynthesis.!! In
fact, the same basic skeleton as 17 is found in deoxyadifoline (18).12

Although the reported spectral data did not allow a clear distinction between 1 and 17 as the structure for
maxonine, two NMR experiments on the authentic sample already in hand were decisive. Delle Monache et al.
had shown that irradiation of H-19 caused considerable NOE enhancement of H-21, consistent with both
structures 1 and 17. We found that irradiation of H-21 gave NOE enhancement of H-19 and the methyl
resonance, as expected for both 1 and 17. In addition, NOE enhancement was also seen for H-12, but not H-5,
which is consistent with structure 17 but not 1. Morcover, long range HMQC measurements — which indicated
three bond coupling of C-2 with H-6 and H-21, and of C-3 with H-5 (but not H-21) — reinforced the revision of
maxonine's structure from 110 17.
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Validation of the structure revision was achieved by total synthesis (Equation 4). Alcohol 9 was
converted to unstable bromide 19, which was then used immediately to alkylate the indole nitrogen of
benzalharmane (3) to produce 20. A palladium-catalyzed intramolecular Heck reaction!3 then gave both cis-
and trans-21 along with 22.14 Finally, oxidative cleavage of the stilbene double bond in 21 produced 17
which, except for chiroptical propertics, is identical to authentic maxonine by direct comparison.
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In summary, the structure of maxonine is established as 17, not 1.
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EtOAc/pet.edm)—blngs(n%) 9:0.809 g8in 25 ml ethu 2.6 30MCH 1n ether at -78"; 18
hat20.quH4Cl/etherworkup flash chrom y (silica, 3:2 EtOAc/petether 40713;9(81%) '10:
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chromatography (silica, 1:4 EtOAc/pet. ether) — 0. 3g 10 (83%). 12: 0202310m5ml'l'HFat-78 +
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1H), 8.53 (d, J=3.9 Hz, 1H), 8.27-8.21 (m, 4H), 8.14 (d, J=6.0 Hz, 1H), 8.12 (d, J=3.9 Hz, 1H), 7.52 (t.
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